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Abstract: In this article, we investigate a three classes of generalized mixed type
double Bernoulli-Gegenbauer-Gould and Hopper (BGG-H) polynomials. Some spe-
cial polynomials of the generalized mixed type Bernoulli-Gegenbauer polynomials
are discussed to obtain certain results and relations of our double (BGG-H) poly-
nomials in terms of known and unknown functions. Some inequalities and limiting
cases of double (BGG-H) polynomials are presented and then on using them we
construct a matrix representation and obtain integral estimates.
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1. Introduction, some special functions and their values
Throughout this investigation, we consider two variables analogue of Gould and
Hopper polynomials containing seven parameters given by my,ms € Zy, (a set of
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positive integers); hi, ho,v1,72,p € R\{0}, (a set of real numbers except set of
zeros) or belong to C\{0}, (a set of complex numbers except set of zeros).

A generalized Hermite polynomial of two variables is defined by the following
generating function

m ” = — o tn Tk
M) (1t 4 gy T)” = Y H R () S (L)
n=0 k=0 o

Here all the parameters are independent of the variables z and y such that
lz] < 1,]y| <1, and | yt+ T |< 1.
Also in the formula (1.1), Vn > 0,k > 0;n,k € NU {0},N (a set of natural
numbers) and the double series representation is found as
H(hl’h27m17m2’717727p)<

7] [75]
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z,y)

E

il

n'k‘ (hl)r (—’le)n_mlr (hQ)s (_72y)k—mzs
rl(n —myr)ls! (k —mays)!

(_p)n—mlr—i—k—mzs (12)

Il
=)
I
=)

where [z] be the step function defined as Vo € R, and [x] means the greatest integer
<z, that is, n £ x <n+ 1Vn € Z,Z (a set of integers).

It is remarked that on putting 4 = 7% = v,m; = mg = m and hy = hy = h
n (1.1) - (1.2), we get a formula of Chandel, Agrawal and Kumar [3], having four
parameters, (v, m, h, p), studied by them in 1992.

Again the generalization of Hermite polynomials in the form of Gould and
Hopper polynomials [5] are defined by

]
n] h)r )n mr
=y ) (1.3)
r=0
with the generating function
= m " zt+ht™
n=0 )

(see also in [14, pp. 76 and 86|, respectively).
Clearly, in formula (1.2) on replacing x by 2 and y by ¥ and again then taking
p — oo and then making an appeal to the formulae (1.3) and (1.4) we get a
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bi-product of the Gould and Hopper polynomials in the form

H(m h2,m1,m2,71,72,p) <§ y) _ % n! (h)" (o)™ [ng] k! (hy)® (’sz)k_ms

( )

=g, (M, h1) g;* (29, h2) -
On the other hand, Pathan and Khan [11] introduced a generalized Hermite
polynomials of two variables in the form of a generating function as

tn
eP@Fy)t=(zy+1)e ZHnmp T,y)— ol [t <1 (1.6)

n=0

where,

m 1+£L’y ( 1)kpn—mk(x+y)n—mk
|
Hoimp(2,y) Zn (n—mk)!

It is noted that after some mampulatlons, some of the relations for the polyno-
mials in (1.6) are found in terms of the polynomials given in (1.3)-(1.4).

X244(h+1
VXD 4

For example, if in the formula (1.6) put z = 3 F 5

y=2+ —VXQZLM, we get an identical results to (1.3) and (1.4) as
X X2+4(h+1) X X2+ 4(h n—mk
. _]F\/ +4(h+1) _i\/ + +1 Z” pX)
2 2 2 (n — mk)!

=g (pX,h). (1.7)

Further, in the formula (1.7) set m = 2,h = —1,p = 2, a relation with Hermite
polynomials, H,(.),n > 0, is found by [14, p.76]

—1 kn 2X n—2k
Hy22(0,X) = ( ,3 En —>2k)

= 22X, -1) = Hy(X).  (L8)

Recently, Quintana [12] presented and analyzed a generalized mixed type two
classes Bernoulli-Gegenbauer polynomials by defining the following generating func-

tions
o

t - "
T et =>" vl(x)— (1.9)
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where [¢| < 27, |z] <1 and a € (—3,00) \{0}.

Again to analyze more results in this field , from the formula (1.9) for o« = 0 and
a = 1 we present some relations and formulae by different methods to Quintana
[12] in the following way:

Therefore on setting o = 0 in the formula (1.9) and get

’fl

i O =™ (1.10)

n=0

Now in the result (1.10) use the formula (see, Rainville [13, p.168]) given by

e””tJ(](t(l—x 1/2) ZP © (1.11)

where the 1 order Bessel function is defined by the series

22 k
Jy(2) = (%)" Yoo k!1§;7—11~c)+1)’77 is not a negative integer, z € C.

Also in the generating function (1.11), the Legendre polynomials of degree
n, P,(x)Vn > 0, is defined by > P,(2)t" = (1 — 2xt+t2)71/2, provided that
lt] < 1,|z] <1.

By which some familiar polynomials are given by

1 1
Py(z)=1,P(z) =z, P(z) = 5 (32° — 1), P3(z) = 5 (52° — 3z) .
Therefore by the formulae (1.10) and (1.11), we obtain
()
(0) n! t" . - t"
ZZ oD O e D Pl
n=0 k=0 n=0

thus we derive a result

=)\
B z; k!(ni! 2k)! < ) v o) (1.12)

Vn=0,1,2,3,...
Now introducing the values of P,(x) in the formula (1.12), we obtain some
special polynomials

véo)(x) =1, vgo)(x) =z, vy (v)=2a% vy (v)=2" ... (1.13)
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Again in the formula (1.9) setting o = 1, we get

> tn tet ot 2\ 7!
W ot
2 Wy w—n@ +MQ
(1.14)

Here in (1.14), we have the generating functions, (see for example in [14, p.83
Eqn.(10)])

3
||M8
(e}
3_
3
3 :
??‘
\:3:3/
R‘
/\

(1—2xt+¢%)" Z U (
for the second kind Tchebycheff polynomials, U,(x) Vn > 0; and in [14, p.85
Eqn.(21)]14
et — ZB

for Bernoulli polynomials, B, (z) ¥n > 0.
Therefore by Eqn. (1.14), we get

e 12 ;_’“(Ig)’ o) 2,v > 0. (1.15)

Now in the formula (1.15), setting the familiar polynomials of second kind
Tchebycheft polynomials, U, given by
Up(z) = 0,U1(z) = (1 — 22", Up(z) = 22 (1 — 2°)"/%, Us(a) = (42> — 1) (1 — 2?)"/?,

we obtain various special functions

(1—22)"? (1—a22)"? T
o (@) = 0,0{" (@) = = ——Bo(w) o} () = ————{ Bi(x) + = By(a) |
(1.16)
1/2 2
(1) . 3 (1 — 132) 2x (41’ — 1)
v (x) = S By (z) + Bl( )+2—7T230(93) :
So that by (1.16), we derive some values in terms of Bernoulli numbers

1 Bi(0 3 1
o(0) = 0,60(0) = - Ba(0),1§(0) = 22 o) = 2 Lm0y + Lm0y

27 s o 27
(1.17)

Motivated by above investigations, in the present article to explore new ideas in
the field of mixed type polynomials, we make an appeal to the formulae (1.1)-(1.9)
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and thus introduce a generalized mixed type double Bernoulli-Gegenbauer-Gould
and Hopper polynomials in following form of a generating function

ol a2

T

(eT—1)(1—%+%)

X (Lt + ypyT)P et Hat™

t
(e = 1) (1= + 37)

n k

0o 00 N . N " t
ZZKP 1,h1,m1 1502, ko, 27’72)(x’y;p’9’(10)——’ (1.18)
22 n! k!

provided that 0 < |t|+|T‘ < 2 ‘V’G,go > 0, h1,71, ho, Y2, p € R\{0},y = max {|n], [12]},
m1,me € N, |z|, |ly] <1 and a1, a0 € (—1,00)\{0,1}.

2. Certain results and relations of (1.18) in terms of known and unknown
functions

In this section, to derive the results and relations due to generating function
(1.18) in terms of the known and unknown functions, we consider § = 7, ¢ = T,
and thus for all [t| < 27, |T| < 2, there exists an interesting generating function
in following form

aq

> = n Tk
§ E (a1:h1 m1,y1;02,h2,ma ”/2) T t
i W e (- )
I : (1 +yat + yyT)P Mt ThI™2 (9 1)
@ ()

Theorem 2.1. For( < M IT\ < l s hi, 71, he,v2, p € R\{0}, mq,ms € N, |z|, Jy| <

1 and aq,00 € (—3,00) \{O 1} v = max {|y1|, ||}, if the double polynomials is
defined by

Ny
A%»f%ymhﬂ"b%%ﬁm;ﬂ 1’ y (Nl) ( )
1,N2 2 : 2 :

$1=0 s2=0
(h1,h2,m1,m2,71,72,p)

X (_Ip) (_yp)szHNl—shNg—sg ('I? y) (22)
Then ¥Yn > 0,k > 0 there exists a relation
P(Oél7h1,m1,71;a2,h2,m2,v2)

K& nk (I7y7p)

—Zz(rl)( ) P ) AL @), (23)

r1=07r2=0
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where we suppose that all v(_og() are zero ¥n € N, o € (—3,00) \{0,1}.
Proof. Consider the function (2.1) in the form

o

0 (o h b ) n Tk
ai,hi,miya2,he,me,y2 .

E E kP, (ﬂ%y,p)m—k!

n=0 k=0

a2

aq
epxt T .
(" = 1) (1 -2+ 1)

™

t
(et —1) (1— 2t 4 %)

™

x e PPV (1 oyt 4 TP Mt the ™2 (2.4)

epyT

Now in the right hand side of the Eqn. (2.4) use the formulae (1.1) and (1.9)
and then apply series rearrangement techniques (see in Rainville [13, pp.56-58] and
Srivastava and Manocha [14, pp.100-103]) we derive

0o oo (oLt . ) m Tk
§ :2 : a1,n1,m1,71;02,7h2,m2,72 .

KPn’k (:anap)ﬁ k'
n=0 k=0

0o oo M k n k
2SS () ) et
1) \I2
n=0 k=0 r1=01ry=0
n—ry k—ra n k
n—ry\(k—r s so 7(h1,ha,m1,ma,v1,72,p) t"T
) Z Z ( 51 ) ( 52 )(—$p) P o S (:E,y)gg
s1=0 s2=0
(2.5)
Then make an appeal to the results (2.2) and (2.5), at once we find the relation
(2.3).

Theorem 2.2. If all conditions of the Theorem 2.1 are satisfied and suppose double
polynomials is defined by

By rs(2,y:p) = {i: Ci)vﬁf”gl(px)(—px)sl 22: (Zz) e, (py)(—py)w} (2.6)

s1=0 s52=0
then ¥Yn > 0,k > 0 there exists another results in the form

(a1,h1,m1,71502,h2,ma2,72)
P

K& nk (I7y7p>

n k
n k hi,ha,m1,m2,7v1,72,

r1=01r2=0
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Proof. By the result (2.5), we also have

ai,hi,m asg,ha,m tnTk
ZZKP 1,h1,m1,715002,h2, 272)( yp) 'k'
n=0 k=0
hi,ha,m1,m2,7v1,72, o a
=30 " gltptememeariz g )y N gl (@p) S 00 (yp)
n=0 k=0 r1=0 ro=0

tr1+sl TT2+82 tn Tk

X Z Z —px)” (=py)* rllsll Tolsal nl Kl
_ZZ Z i (rl) ( ) nh1rilgkm;2m2,71,72,p)(x7y)

n=0 k=0 r1=01r2=0

) e s (72 e L TY
X Z Z ( 1) ol (pz) (—pz)* (sz)vé)”(py)(_py) 25? (2.8)

$1=0 s2=0

Now in the result (2.8) make an appeal to the formula (2.6), we immediately find
the relation (2.7).

Theorem 2.3. If all conditions of the Theorem 2.1 are satisfied and suppose the
polynomials are defined by

o) = 3 ()l o) - (29)
$1=0

and

¢ (yp) = Y <32) v, (yp) (—py) ™. (2.10)

s2=0

Then ¥Yn > 0,k > 0 there exist following equality

KP (o1, h1m1’71a2h2m2’y2)(x7y;p)
(e
p) 0 ‘ (h1,h2,m1,m2,71,72,p)
= " a H 5 (@) (2.10)
12::022::0 (X)) (yp) vk

Proof. Make an appeal to the theory and methods of the Theorems 2.1 and 2.2
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we may write the generating formula (2.4) as

§ § (OZ hi,m ag,ha,m Y: ) tn 2
5141y Y13 3102, ’
P 7kl 1 1,71;02,12 2,72 ( y p> ‘ k'

- ii i 2 ( ) v (ap) ( kz ) ¢5~§2)(yp)H(’E’M’T“m”“”’p)(fmy)ﬁT—k

n—ri,k—ra | .1 °
n! k!
n=0 k=0 r1=07r3=0

(2.12)

In (2.12) the polynomials o) (xp) and P 2)( p) are defined in (2.9) and (2.10)
respectively.

The formula (2.12) immediately gives us the formula (2.11).

Theorem 2.4. If all conditions of the Theorem 2.1 are satisfied and suppose double
bilinear polynomials is defined by

q)g?hml,hlzp) (xp) 0

0 Wig2 R ()

(2.13)

Arl,rz (Oél, hla miy, 71, G, hg, ma, 72, %, y7p) =

where, we denote

T1
ay,mi,h1, _ (a1) .
ot o) = 3 (1) kgt (emlay (et

s1=0

and

72
ag,ma,ha, _ T2 (a2) .
i) (yp) = (52) Vrass, (UP) GG (—yp; h2) -

s2=0

Then ¥Yn > 0,k > 0 there exist following equality

KPT(L?;;,h17m1,’y1;a2,h2,m2772) (L‘ , Y, p Z Z ( ) ( ) (_p)n—rﬁ-k—m

r1=01r2=0

Plovmihip) (zp) 0

0 \I,(az,mmhz,p) (yp)

T2

X (—m12)" " (—yey)t " (2.14)

Proof. Consider the formula (2.4) and write it in the form

o ay,hi,m ag,ha,m " Tk
ZZKP 1,h1,m1,71;002,h2, 272)( yp) |k'
n=0 k=0
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al a2

t T
[(et—l)(l—%’tvL%) (7 =1) (1 -2+ 1)
x e TPt ooy THhe T2 (1 4 ot 4 oy TP (2.15)

Then in right hand side of (2.15) use the generating formulae (1.4), (1.9) and the
binomial formula, we obtain

. v, 7 tnTk
ZZ POé1 1,M1,71502 2m2’72)(xyp) 'k‘
n=0 k=0

S 9) 3> DD I (B | ([ RS B

n=0 k=0 r1=07r2=0

paxt epyT

T
nl kl
Here in (2.16) the double bilinear sequence is defined by

XArl,rg (a17h1>m17717a27h27m27727‘r Y, p) (216)

AT‘1,7‘2 (ala h17 my, V1, Qa, h27 ma, Y2; T, yap)

—Z< ) vl (zp)g™ (— ZL‘p,hl)i ( TZ) v (yp) gl (—yp, ha)  (2.17)

r
s1=0 s2=0 2

Now in (2.16) make an appeal to the formulae, given in (2.13) and (2.17), we obtain
the result (2.14).

343 5h ’ ’ 5 ’h ’
3. Inequalities of KPTEO,‘; LILTa2,R mzm)(.)
’

In this section, in order to find the inequalities involving the function
P,EO;;’hl’ml’%%h”m%m(.), we first prove a lemma related to the exponential and
binomial functions given by:
Lemma 3.1. If 0 £ yat + yyT < p,Vp € Zy, (a set of positive integers), then
there exists following inequalities

—p
(1 4 ot eyt WyT) < enoterT < (1 _ et 4 9yT) mT)) (3.1)
p p
Proof. Comparing the three series (see also in [13, Rainville, p. 15, Lemma 1))
t T t T
14 Mt + Yoyt 14 MNxL + Y2y 7
p p

. . - T 0 <v1zt+'yzyT>
xt y y1zt+y2y x
1wt oyl Jiettyyl _ 4 ATt YL 71 Y2y 4 Z (3‘2)

er e pr —¢ P =

n=
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and

t+yyT)\ ot +7yT) o= [ nxt+yyT\"
(1_(71$ p%y )) :1+(71 p%y )+Z<% p72y ) 7

n=2

we get the inequalities

(1 N yat + ’yQyT)l < it s < <1 _ (nat+ *ygyT)>_1

p p
Then raising (3.2) by the power p Vp € Z,, we find the required inequalities of
(3.1).

Theorem 3.1. Ifv; > 1,7 > 1 and all conditions of the Theorem 2.1 are satisfied,
then by the generating function (2.1), there exists an inequality

(01,h1,ma,y1500,h2,m2 ) [ L y
K‘Pn7k' — P
pp

< {Z (1) e (s = Dan }{Z( )i war (0n - 1>y,h2>}.

r=0 s
(3.3)
Proof. Consider the generating function (2.15) in which replace x by - and y by
]% to get it in the form

o0

> n Tk
(ar,hi,miyise2,homanye) (LY t_T_
DI (5 %0)

n=0 k=0

«aq a2

¢ T
(et—l)(l—m—t—i—Mz) (eT_l)( _%—i_%)
_xt—yT6h1tm1+h2Tm2 (1 + M)p . (34)

xt

X e
p

Now making an appeal to the inequalities (3.2) in the formula (3.4), then for
v > 1,7 > 1, we get

o [o.¢] n k
(a1,hi,miyisez,hemeye) [(LT0Y t"T
> b (2.00) S

n=0 k=0
Qa2

t

[(6t -1 (1 - x_t + 47r2)

Xe(’yl—l)mt-‘rhltml +(’72 1)yT+h2Tm2 . (35)

A
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Again on defining the functions given in (1.4) and (1.9) and thus using series
arrangement techniques we obtain

(o1,h1,m1,71502,h2,may2) (£ Y,
KPn’k Y4
b D

<ZZ< )( ) “D(@)gm (= D b)) v (9)g (72 — 1)y, ha) . (3.6)

r=0 s=0

The inequality (3.6) gives us the formula (3.3).

Theorem 3.2. If vy > 0,7, > 0, and all conditions of the Theorem 2.1 are
satisfied, then by the generating function (2.1), there exists a limiting formula

tn Tk
1 Pa1 Jhi,ma,yr;oe, h2m2'72) f g -
pljgzz ppt)

n=0 k=0
as

e xt+hit™1 e? yT+ho T2

:[ t
(et —1) (1 -2+ L)

(3.7)
Hence then for v; > 1,9 > 1 there exists a double polynomials
lim P(al hi,m1y1502,he,me,y2) [ L Q.p
p—)OO p7 p?
[k
) Z ( ) @) (=D ) 3 (s)v,i”s)(y)g;@ (2 =1y, h)  (38)
s=0

Proof. Performing the techniques of (3.4)) and then for 74 > 0,2 > 0, taking the
limit p — oo in both the sides to get it in the form

@ m « m Ty " T*
lim P 1 hi,miy1500,h2may2) (4 Y
W,;,;K )

- ; aq T s
(-D(-2+55)] [F-D0-F+5)
x et FhaT™2 iy ( Nt + VQyT) : (3.9)
p—r00

In the formula (3.9) on defining exponential function, we get the formula (3.7).
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Again then for all 43 > 1,72 > 1, making an appeal to the formulae (1.4) and
(1.9), we get the formula (3.8).

4. First few polynomials of P, (e, ma mrsosh2,m2:02) (Y | e N U {0}
On applying the formulae (3. 3) and (3.4), we obtain special polynomials of
KP(O;Cl7h1»m17’71§a27h21m2’72 ( ) Vn,k € NU {0}

Therefore for an example and for all 4 > 1,7 > 1, and for 0 < ‘;' + lT‘
%,hh%,hzy%,p € R\{0}, my =3 = my, |z[,|y| <1 and oy, € (—3,0) \{0 1}

~ = max {|1|, |2|}, due to Quintana [12], we give first few polynomials of v ()
Vn € NU{0} as

a7

@ =1, @ = (1+ D)2 -3

2
(@), 200 g (g +1)\ (1) a; (3o — 1) I
U21(x)—(1+ . + 71'2 xr — Ozl—l- - .T—f‘? T—F y

and due to (1.3) we derive following first few polynomials of g3 ((y; — 1)z, hy) Vn €
NU{0} g5 (=D ha) = 1,08 (= D, ) = (n—Da,g3 (n— D h) =
(1 = 1)%a?, g3 ((n =D, h) = (1~ 1)"2" + 6hy,

Thus making an appeal to the Theorems 3.2 and 3.3 and the formulae (4.1) we
obtain first few polynomials of KP enhdmenhe832) yn ke NU{0} as

KPO(a1 ,h1,3,71502,h2,3,72) (E’g,p) < lim Kp(al h1,3,71500,h2,3,72) (.T y p) (42)
p P P00 pp

( ) v ()92 (n — 1)z, hl)} {Zgo ( ! ) v ()g? (2 = 1)y, h2)}

{ s
:i( )ﬁt)ﬁ«m—me> SJ

0 a
(T @t en-vam)
r=0
KP(SC(? ,h1,3,915002,h2,m2 72) (; i’p>

a1,h1,3,71;02,h2,3,72) (g gp) -1

p’p’

(
< limy 00 x Py g
Similarly we obtain
(a1,h1,3,71;02,h2,3,72) .
KPL(] L4 §

=+ 2 +m-1D)r—9,
P2(a1 ,hi,3,71502,h2,3,72) (

(a1,h1,3,71502,h2,3,72) .
hmp—>oo KP1 g p

a1,h1,3,71;02,h2,3,72) Y.
K D

% b P <hmp~>ooKP2(
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<1 +2a 4 O“(alH) + (2 2 (=) +(n - 1)2> z?

(a1(1+(’71—1 )I—i—al(gal 1)—7%2),

ai,h1,3,v1;002,h2,3, T aq,h13,71;092,h2,3, T
KP7§01 1,9,71;02,12 72) <1_3 % )<hmp~>OOKP(7()1 19,71;02,h2 ’YZ) <p p,p>
= 20 (o (@)gd (n = D, ),

oz,h,3, sa2,h2,3,72) [z ai,h1,3,71;02,h2,3,72) [«

P 1,11,3,71;02,12,3,72 <;% )ghmpﬁooKP 1,11,3,71;02,12,3,72 (p p’p)
:(1+%+(’Y2—1))y 53

KP(Oq,hmm 13a2,h2,ma,v2) (
1,1

P’ p p) S limy o0 KP1(C¥1 i daiazheiaz) ( p)
=(me+Lr-D+2nH-1D)ay—2(e-1)y—%2Mm-1

ag,h1,mi,v1;02,ha,ma, T ai,h1,mi,v1;02,ha,ma, z .
KP2(’11 1,m1,71502,h2,m2,72) (57%,29) <hmp—>ooKP(,11 1,m1,71502,h2,m2,72) (E’%’p>
={(l+2+(e-1))y-%

{14 2 et (o 4 2y () ) 4 (- 1)) a2
2
(o) (- 1)),
h1,3,71;02,h2,3, T 3 a1,h1,3,71502,h2,3, z

PT(L,ll ' " o "/2) (1_77 %;p> g llmp%oo KP7(L711 ' . o 72) (p p7p>
(S ()i @)g ((n = D, h) p {1+2) y = 3 + (- 1y},
(
0

K

aq »hl 737')/1 ;OéQ,hQ,S,’}Q) xr Y. 3 (al 7h1 73771 ;012,h2,3,')/2) r Y.
KP,k p pr P ghmp%ooKPo,k prp P
K

{Z’;:O ( )Ul(fa2.s)(y>g§ ((72 - 1) Y, h?)})
Pl(al’hh 'YI,OQJQ’ 72) < p’p) - hmpHOO Kpl(

{0+ 2) =3+ (- Da}{Zh Ol we (-1

’h 73’ bl ’h "y 7h "7y b 7h "~y
KPQ(O]: 1,3,71502,h2 72)( p7p> —hmpﬁooKP(al 1,3,71;02,h2,3,72) (
1
-2

ai,hi,371502,h2,3,72) [ 2
(557
)Y, h2)

; ~s|<a

Y

)
)
7)

’EI‘&

)

{0 () ey (S
+(2+2) (- Da?—a(n—Dz) + (0 —1)° 22}
{520 (el w)gd (2 = Dy ha) |

(a1,h1,3,71;02,h2,3,72) : (a1,h1,371502,h2,372) [z .
KP P pvp éhmp—woKPn,k ;;;ap .

= {Z?:o (el @)gd ((n = D, i) {525 C)ol2w)gd (2 = 1y, ha) |

)
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Hence due to (4.2), there exists a non-singular matrix given by (4.3)

(a1,h1,3,71502,h2,3,72) x y
KP070 P

Aniixi(r,y) = lim

e (a1,h13 ha3)
ai,h13,71502,h2,3,72 z oy

(a1,h1,3,71502,h2,3,72) (2 y (a1,h1,3,715002,h2,3,72)
KP() p? pup KP() p p7p

. . . (4.3)
(a1,h1,3,71502,h2,3,72) [z y (a1,h1,3 le,Oélez, 72)
KPnJ P pap KPnk p pvp
From (4.3), particularly, we write
(a1,h1,3,’71;02,h273,72) z .
P 57 Eap
7h 9 b b 7h 737
Aseol,9) = lim U e v
(a1,h1,371502,h2,392) (2 .
KPZ,O D’ Eap
(a1,h1,371502,h2,372) (2 . (a1,h1,3,71;02,h2,372) [z y.
xkFo1 ga;ﬁp ko2 oD
shi;maysensha,meye) o (a1,h1,m1y1500,h2,m2,72) (2 y
P(al p KP PERel Y (4 4)
1,2 Y ) .
p’ p’p
(ar,hi,miy502,he,mey2) (2 y (a1,h1,3,71502,h2,3,72)
KPZ pap P2 2 p?p

5. Application of KP(al’hl’mlm’az’hz’mz’”)(.) to obtain integral estimates

To find out the estimates for any function f(x,y)Vz,y such that a <z < b;a <
y < bi[f(z,y)] < My and f(a,y) = 0 = f(b,y)Va < y < band f(z,a) =0 =
f(z,b)Va < x < b. we state the following theorem:

IA

Theorem 5.1. If in any square domain a < x < bja < y < b; }(8%) f(:c,y)!
M, <8‘9y> f(z, y)‘ < M,. Also initial and end values are f(a,y) =0 = f(b,y)Va <
y<band f(r,a) =0= f(x,b) Va <z <b, and a1 = g, hy = hy,m1 = Mg,y =

V2-
Then for all conditions given in the Theorems 3.2 and 3.3 there exists following

estimates
a (e1,h1,m1,y501,h1,mim) [T Y
fxy K‘Pnk’ . — P dxdy
"oy ’ p'p

M1 + M) F(a b) (5.1)
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Here,

dzdy.

a1 hi,m1,y1500,h1,m1,71) (E gp)
papa

p—00

Proof. Consider the double integral as

/ / f(z,y) (—+§> PG sienhmn) (gg;p) dxdy (5.2)
Y pp

Now in the double integral (5.2), under the conditions given in the Theorems
3.2 and 3.3, using the theory of the Lemma 3.1 we find that

/ / f x,y ( a ) prgoz‘l,hlgmly’ﬂ%alyhl»mlle) (E, y;p) dxdy
pp
k
[ { ( U/ials (¥)g (m =Dy, hl)}

( ){i :‘) v (z)gm ((’Yl—l)x,hl)}f(x7y)dx] dy

/ / _Zk: (i) o) g (n = 1)y, hl)}

s=

((%){ (1) e <<m—1>x,h1>}f<x,y>dy] (53

Since here in this theorem a; = ag, hy = ha,my = ma,y1 = 79, therefore in (5.3),
the change of order of integration techniques is followed.

Then under the conditions f(a,y) =0 = f(b,y)Va <y < b and f(r,a) =0 =
f(z,b)Va < x < b, and on applying the method of integration by parts in the inner
integrals of (5.3), it gives as

(a1 h1,m1,y1500,h1,m1,71) f Q dxd
(ax ay> (p,p,p> f(z,y)dz y‘

<|//{Z<) ((%—1)%’11)}

s

. {2 (1) (s = 1), m)} (i) ods |

r=0
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+\//{ ()vkms)(y)gim((%—1)y,h1)}

« {Z (1) e (on- s m)} (i) |

r=0

L[

{i (i) u () (n - 1)y, hl)}

() 76 lasti

< (M + M) hm/ / || & Pal oy h ma ) (E,g;p) | dxdy. (5.4)
pp

Finally here on putting (a,b) =

p’p’

Oél h1,m1,v1500,h1,m1,71) (g) g.p> ‘ dxdy,
we get the inequality (5.1).

Example 5.1. From (4.5) consider that lim, KP(O” ohasmayien,hamam) (p p,p)

=+ 2 m-D+Lm-1))ay—%nm-Dy—%m-1az
Also for any double function f(x,y); Va <z < b;a <y < b; is such that

}(a%)ﬂ o <M |(2) f(@y)| < 2,

) (& + &) PlGrmaestimn) (£ 4y ) dady| < (My + My) Fla,b)

Where,

2
F(a,b) = ((71)2 + % (1 — Oél)) <b2§a2> - (#) (b —a) (am — an).
Solution. Making an appeal to the result (4.5) as

a mi,ya m T
hm KP( 1,h1,ma,71500,h,ma,71) (_ gp)

p'p

/ / {( (O‘Wl - 041>> Ty — <a12% _ %) Y —

(al% — %> x} dxdy
2 2
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which on applying the double integration techniques give us the result (5.6).
6. Conclusions

By generalizing the method given in the present paper, some more interest-
ing consequences of the generating functions for systems depending upon one and
more variables and represented by multilinear extensions of classical results in-
volving classical special functions may be obtained. The importance of Hermite
polynomials is now well known; therefore a brief discussion of analogous linear and
multiple generating functions will be very interesting.

Further, it may be remarked that, for the future directions of the study in the
field, the discussion on the reducible cases of the linear and multi-linear generating
functions may be very interesting. For example a ratio of the generating functions
involving in numerator product of the generating function (1.4) of Gould and Hop-
per polynomials (1.3) with the generating function (1.9) as mixed type two classes
Bernoulli-Gegenbauer polynomials due to Quintana [12] and in its denominator
there is our generating function (2.1), then there exists a reduced double series
given by

oo o . tn Tk
O™ yp) Sy
n=0 k=0
0o 00 n k
n\ o AN tvT*
ZZ{ (T)gnlr (xp, hy) vl (xp)} {Z (S) g2, (yp, ha) v (yp)} .y
_ n=0k=0 \r=0 =0
— (a1,h1,m1,71;02,h2,ma2, tnTk
ZZKP 1,M1,71;02,h2 272)( 7y;p)n'k|
n=0 k=0 o
(6.1)
Then the double series in (6.1) is represented by the reducible generating function
— Y1,72) " Tk 2xpt+-2ypT
ZZC D) — =€ (1 + vyt + youyT) ™" (6.2)
n=0 k=0

It is noted that on multiplying both the sides of the formula (2.1) by e22Pt+2urT

and then using the definitions of the generating functions (1.4) and (1.9), we easily
find the results (6.1) and (6.2). Also Vn > 0,k > 0, the result (6.2) gives us the
double polynomials in the form

T wp) = y’“ZZ( ) (5) hoacrtnrss (o (o

r=0 s=0
(6.3)
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By (6.3), it is also noted that the double polynomials in (6.3) are independent
of the parameters oy, hi, mq, as, hy and my.

The first few special polynomials are derived due to generalized mixed type
BernoulliGegenbauer polynomials. Then we obtained certain results and relations
of our double (BGG-H) polynomials in terms of known and unknown functions.
We also derived some of the inequalities and limiting cases of double (BGG-H)
polynomials and then by using them we have constructed a matrix representation
and obtained the integral estimates. Another result of interest is the formula
(1.6), which in view of the work available in [11] may yield well-known results of
polynomials associated with Humberts polynomials [14, p.86].

The results obtained in the Sections 1 and 5 are very applicable to derive various
formulae concerning to the integrals involving the generalized special functions ( for
example see in [1]). Also on making an appeal to the results given in the Sections,
3, 4 and 5, we may analyse some properties of generalized Bernoulli polynomials
and numbers found in the literature (for example see in [2], [4], [6], [7], [8], [9], [10],
[15] and others).
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